河南师范大学学报(自然科学版)

2018, v.46;No.199(02) 104-110+2

[打印本页] [关闭]
本期目录(Current Issue) | 过刊浏览(Archive) | 高级检索(Advanced Search)

基于PCA和信息增益的肿瘤特征基因选择方法
Tumor feature gene selection method based on PCA and information gain

徐久成,黄方舟,穆辉宇,王云,徐战威
Xu Jiucheng,Huang Fangzhou,Mu Huiyu,Wang Yun,Xu Zhanwei

摘要(Abstract):

针对肿瘤基因数据因维度高和冗余基因较多而导致分类精度低的问题,提出一种基于PCA和信息增益的肿瘤特征基因选择方法.该方法首先使用PCA算法剔除冗余基因,获得预选特征基因子集;然后利用信息增益算法对预选特征基因子集进行优化选取,得到特征基因子集;最后采用不同分类模型对特征基因子集进行仿真实验.实验结果表明,所提方法提高了基因表达谱的分类精度,从而表明致病基因被有效地选取出来.
Aiming at the low classification accuracy of tumor genetic data with the characterstic of high dimensional and unrelated genes,a tumor feature gene selection method based on PCA and information gain is proposed.Firstly,the PCA algorithm is used to eliminate miscellaneous genes and select the preselected feature gene subset in this method.Then,the information gain algorithm is used to optimize the subset of the preselected feature gene subset,and the feature gene subset is obtained.Finally,different sorting algorithms are used to simulate the feature gene subset.The experimental results show that the method proposed in this paper improves the classification accuracy of gene expression profile,thus indicating that the pathogenic gene is effectively selected.

关键词(KeyWords): 基因分类;主成分分析;信息增益;特征选择
gene classification;PCA;information gain;feature selection

Abstract:

Keywords:

基金项目(Foundation): 国家自然科学基金(61370169;60873104);; 河南省科技攻关重点项目(142102210056;162102210261)

作者(Author): 徐久成,黄方舟,穆辉宇,王云,徐战威
Xu Jiucheng,Huang Fangzhou,Mu Huiyu,Wang Yun,Xu Zhanwei

DOI: 10.16366/j.cnki.1000-2367.2018.02.017

参考文献(References):

扩展功能
本文信息
服务与反馈
本文关键词相关文章
本文作者相关文章
中国知网
分享