OMS-2制备方法对其负载Cu催化剂CO氧化性能的影响Effect of OMS-2 support preparation technique on CO oxidation of Cu/OMS-2 catalysts
汤清虎,王晓培,谢小培,赵培正
Tang Qinghu,Wang Xiaopei,Xie Xiaopei,Zhao Peizheng
摘要(Abstract):
采用3种不同方法制备氧化锰八面体分子筛(OMS-2),通过浸渍负载CuO制备了一系列CuO含量为10.0%(质量分数)的CuO/OMS-2催化剂,考察了催化剂在CO催化氧化反应中的催化性能,并利用X射线衍射(XRD)、N_2吸附(BET)、透射电镜(TEM)、X射线光电子能谱(XPS)、程序升温还原(H2-TPR)等手段对催化剂进行了表征.结果表明,固相法制备的S-OMS-2为纳米棒状形貌、结晶度低、比表面积大,而回流法和水热法的OMS-2为针状或纤维状形貌、结晶度高、比表面积小.OMS-2制备方法对其负载Cu催化剂上的CO氧化反应影响较大,CuO/S-OMS-2具有最高的催化活性,这可能是因为CuO/S-OMS-2中较大的比面积、较多的晶格缺陷以及高分散的CuO提供了更多有利于CO氧化反应的Cu-O-Mn界面.
OMS-2 supports were synthesized by three different methods,and a series of CuO/OMS-2 catalysts with CuO loading of 10.0 t%(mass fraction)were synthesized by the impregnation method.The synthesized catalysts were characterized by X-ray diffraction,N_2 adsorption,transmission electron microscopy,X-ray photoelectron spectroscopy and H2-temperature programmed reduction and their catalytic activities for CO oxidation were evaluated on a continuous flow fixed-bed reactor.It was found that the S-OMS-2 synthesized by the solid phase method with nanorod morphology has a lower crystallinity but a larger specific surface area,whereas,the OMS-2 by the refluxing method or the hydrothermal method with needle-like or fibrous morphology shows a higher crystallinity but a lower specific surface area.The synthesized method for OMS-2 has a great effect on the catalytic activity of CuO/OMS-2.The CuO/S-OMS-2 catalyst exhibited the highest catalytic activity for CO oxidation.The superior catalytic activity observed on CuO/S-OMS-2 is probably associated to its larger surface area,more lattice defects as well as highly dispersed CuO species,which can provide more Cu-O-Mn interfaces for CO oxidation.
关键词(KeyWords):
氧化锰八面体分子筛;铜;一氧化碳;催化氧化;负载型催化剂
OMS-2;Cu;CO;catalytic oxidation;supported catalyst
基金项目(Foundation): 国家自然科学基金项目(21503070)
作者(Author):
汤清虎,王晓培,谢小培,赵培正
Tang Qinghu,Wang Xiaopei,Xie Xiaopei,Zhao Peizheng
DOI: 10.16366/j.cnki.1000-2367.2018.02.008
参考文献(References):
- [1]Royer S,Duprez D.Catalytic oxidation of CO over transition metal oxides[J].ChemCatChem,2011,3(1):24-65.
- [2]Min B K,Friend C M.Heterogeneous gold-based catalysis for green chemistry:low-temperature CO oxidation and propene oxidation[J].Chem Rev,2007,107(6):2709-2724.
- [3]Hernández W Y,Alic F,Navarro-Jaen S,et al.Structural and catalytic properties of Au/MgO-type catalysts prepared in aqueous or methanol phase:application in the CO oxidation reaction[J].J Mater Sci,2017,52(8):4727-4741.
- [4]Fonseca J,Royer S,Bion N,et al.Preferential CO oxidation over nanosized gold catalysts supported on ceria and amorphous ceria-alumina[J].Appl Catal B Environ,2012,128:10-20.
- [5]Bastakoti B P,Torad N L,Yamauchi Y.Polymeric micelle assembly for the direct synthesis of platinum-decorated mesoporous TiO2toward highly selective sensing of acetaldehyde[J].ACS Appl Mater Interfaces,2014,6(2):854-860.
- [6]Chen J,Li J,Li H,et al.Facile synthesis of Ag-OMS-2nanorods and their catalytic applications in CO oxidationt[J].Micropor Mesopor Mater,2008,116(1/3):586-592.
- [7]Sun H,Chen S,Wang P,et al.Catalytic oxidation of toluene over manganese oxide octahedral molecular sieves(OMS-2)synthesized by different methods[J].Chem Eng J,2011,178(1):191-196.
- [8]Sun M,Yu L,Ye F,et al.Tranition metal doped cryptomolame-type manganese oxide for low-temperature catalytic combustion of dimethyl ethers[J].Chem Eng J,2013,220(12):320-327.
- [9]Chen X,Shen Y F,Suib S L,et al.Characterization of manganese oxide octahedral molecular sieve(M-OMS-2)materials with different metal cation dopants[J].Chem Mater,2002,14(2):940-948.
- [10]Hernández W Y,Centeno M A,Ivanova S,et al.Cu-modified cryptomelane oxide as active catalyst for CO oxidation reactions[J].Appl Catal B Environ,2012,123/124(14):27-35.
- [11]Liu X S,Jin Z N,Lu J Q,et al.Highly active CuO/OMS-2catalysts for low-temperature CO oxidation[J].Chem Eng J,2010,162(1):151-157.
- [12]赵海霞,叶青,张玉,等.氧化锰八面体分子筛负载Cu催化剂催化氧化性能研究[J].环境污染与防治,2014,36(4):33-37.
- [13]Moretti E,Infantes Molina A,Sponchia G,et al.Low-temperature carbon monoxide oxidation over zirconia-supported CuO-CeO2catalysts:Effect of zirconia support properties[J].Appl Surf Sci,2017,403:612-622.
- [14]Xu R,Wang X,Wang D S,et al.Surface structure effects in nanocrystal MnO2and Ag/MnO2catalytic oxidation of CO[J].J Catal,2006,237(2):426-430.
- [15]Morales M R,Barbero B P,Cadus L E,et al.Evaluation and characterization of Mn-Cu mixed oxide catalysts for ethanol total oxidation:Influence of copper content[J].Feul,2008,87(7):1177-1186.
- [16]Luo M F,Song Y P,Lu J Q,et al.Identification of CuO species in high surface area CuO-CeO2catalysts and their catalytic activities for CO oxidation[J].J Phy Chem C,2007,111(34):12686-12692.
- [17]Xia G G,Yin Y G,Willis W S,et al.Efficient stable catalyst for low temperature carbon monoxide oxidation[J].J Catal,1999,185(1):91-105.