环状有界的Small Nim博弈Ring-Bounded Small Nim games
刘文安,周晶晶
Liu Wenan,Zhou Jingjing
摘要(Abstract):
提出了一种新的"环状有界的Small Nim"模型,确定出该模型在Normal规则下的所有P位置,从而彻底解决了该模型.
In this paper,we propose a new model " Ring-Bounded Small Nim games".The set of all P-positions is determined under the normal play convention.
关键词(KeyWords):
公平组合博弈;有界;Small Nim
impartial combinatorial games;bounded;Small Nim
基金项目(Foundation): 国家自然科学基金(11171368);; 河南师范大学研究生创新基金(YL201601)
作者(Author):
刘文安,周晶晶
Liu Wenan,Zhou Jingjing
DOI: 10.16366/j.cnki.1000-2367.2018.02.004
参考文献(References):
- [1]范如国,韩民春.博弈论[M].武汉:武汉大学出版社,2006.
- [2]张影.博弈论的智慧[M].北京:中国致公出版社,2009.
- [3]邬锐.博弈论在戏剧冲突中的应用研究[D].上海:上海戏剧学院,2013.
- [4]白波,郭兴文.博弈关于策略的63个有趣话题[M].哈尔滨:哈尔滨出版社,2005.
- [5]郑延斌,陶雪丽.基于博弈论及惩罚机制的多Agent协作控制算法[J].河南师范大学学报(自然科学版),2015,43(6):85-185.
- [6]Bouton C L,Nim,agame with a complete mathematical theory[J].Ann Math,1905,3:35-39.
- [7]Fraenkel A S.New games related to old and new sequences[J].Applied Mathematics,2004,4:1-18.
- [8]Allen M R.Impartial Combinatorial Misere game[M].Halifax:Dalhousie University Press,2006.
- [9]Fraenkel A S.How to beat your Wythoff's games opponent on three fronts[J].Amer Math Monthly,1982,89:353-361.
- [10]Liu W A,Zhao X.Nim with one or two dynamic restrictions[J].Discrete Applied Mathematics,2016,198:48-64.
- [11]Liu W A,Li H F,Li B.A restricted version of Wythoff's game[J].Electronic Journal of Combinatorics,2011,18:545-567.
- [12]Berlekamp E R,Conway J H,Guy R K.Winning Ways for Your Mathematical Plays[D].Pittsburgh:Academic Press,1982.
- [13]Liu W A,Wang M Y.Multi-player subtraction games[J].Theoretical Computer Science,2017,659:14-35.
扩展功能
本文信息
服务与反馈
本文关键词相关文章
本文作者相关文章
中国知网
分享