聚类系数可调的类星形无标度网络模型Star-like scale-free network model with tunable clustering
龙永尚,贾贞,林航,周建
Long Yongshang,Jia Zhen,Lin Hang,Zhou Jian
摘要(Abstract):
在网络平台空前发展的背景下,提出了一个由简单规则构造的聚类系数可调的类星形无标度网络模型.在模型的演化过程中,每个新加入的节点都通过两步连边的方式连接到网络中,其中一部分连边始终连到几个固定节点上,其余边按度优先机制随机连到其他非固定节点上.理论分析和数值仿真的结果一致表明,该模型同时具有无标度,小世界和类星形的特性.有趣的是,不仅度分布的幂指数依赖于固定节点个数δ和连边数m,而且聚类系数也受δ和m的调控,不同的是δ对聚类系数的影响很大,m对其影响较小,这样使得聚类系数具有很大的调节空间.进一步研究发现,该网络的同步能力也随固定节点个数的增加而增强.
In the context of unprecedented development of the network platform,this paper propose a simple rule to construct the star-like scale-free network model with tunable clustering.In the process of evolution of the model,each newly added node is connected to the network through two steps,and some of the links are connected to several fixed nodes while the other edges are randomly connected to the non-fixed nodes by the degree first mechanism.Theoretical analysis and numerical simulation show that the model has the characteristics of scale-free,small-world and star-like.Interestingly,not only the power exponent is related to the fixed nodes numberδand the edge-adding number m,but also the clustering coefficient can be tuned byδand m.The difference is thatδhas a great influence on the clustering coefficient,and m has small effect on it,which makes it can be tuned in a big interval.Further studies show that the synchronizability of SLSF network will be stronger with the number of fixed nodes increasing.
关键词(KeyWords):
复杂网络模型;小世界;聚类系数;无标度
complex network model;small-world;clustering coefficient;scale-free
基金项目(Foundation): 国家自然科学基金(61563013)
作者(Author):
龙永尚,贾贞,林航,周建
Long Yongshang,Jia Zhen,Lin Hang,Zhou Jian
DOI: 10.16366/j.cnki.1000-2367.2018.03.005
参考文献(References):
- [1]WUCHTY S.Controllability in protein interaction networks[J].Proceedings of the National Academy of Sciences,2014,111(19):7156-7160.
- [2]JEONG H,TOMBOR B,ALBERT R,et al.The large-scale organization of metabolic networks[J].Nature,2000,407(6804):651.
- [3]WATTS D J,STROGATZ S H.Collective dynamics of‘small-world’networks[J].Nature,1998,393(6684):440.
- [4]BARAASI A L,ALBERT R.Emergence of scaling in random networks[J].Science,1999,286(5439):509-512.
- [5]BARAASI A L,ALBERT R,JEONG H.Mean-field theory for scale-free random networks[J].Physica A:Statistical Mechanics and its Applications,1999,272(1):173-187.
- [6]李映雪,朱文广,黄超,等.基于自组织临界性的电力异构通信网络稳定性研究[J].电力系统保护与控制,2017,45(05):118-122.
- [7]陆君安.复杂网络的同步和拓扑结构的识别[J].复杂系统与复杂性科学,2010,07(2):19-23.
- [8]FERRARINI A.Evolutionary network control also holds for nonlinear networks:Ruling the Lotka-Volterra model[J].Network Biology,2015,5(1):34.
- [9]LI X,CHEN G.A local-world evolving network model[J].Physica A:Statistical Mechanics and its Applications,2003,328(1):274-286.
- [10]CAO Y J,WANG G Z,JIANG Q Y,et al.A neighbourhood evolving network model[J].Physics Letters A,2006,349(6):462-466.
- [11]GUO Q,ZHOU T,LIU J G,et al.Growing scale-free small-world networks with tunable assortative coefficient[J].Physica A:Statistical Mechanics and its Applications,2006,371(2):814-822.
- [12]ZHANG Z,RONG L,WANG B,et al.Local-world evolving networks with tunable clustering[J].Physica A:Statistical Mechanics and its Applications,2007,380(1):639-650.
- [13]刘慧,李增扬,陆君安.局域演化的加权网络模型[J].复杂系统与复杂性科学,2006,3(1):36-43.
- [14]赵渺希,黎智枫,钟烨,等.中国城市群多中心网络的拓扑结构[J].地理科学进展,2016,35(3):376-388.
- [15]BURGER M J,KNAAP B V D,Wall R S.Polycentricity and the Multiplexity of Urban Networks[J].European Planning Studies,2014,22(4):816-840.
- [16]王圣云,翟晨阳,顾筱和.长江中游城市群空间联系网络结构及其动态演化[J].长江流域资源与环境,2016,25(3):353-364.
- [17]COHEN R.Scale-Free Networks Are Ultrasmall[J].Physical Review Letters,2003,90(5):058701.
- [18]EGUILUZ V M,KLEMM K.Epidemic Threshold in Structured Scale-Free Networks[J].Physical Review Letters,2002,89(10):108701.
- [19]HOLME P,KIM B J.Growing scale-free networks with tunable clustering[J].Phys Rev E Stat Nonlin Soft Matter Phys,2002,65(2):026107.
- [20]ZHOU T,YAN G,WANG B H.Maximal planar networks with large clustering coefficient and power-law degree distribution[J].Physical Review E,2005,71(4):046141.
- [21]ANDRADE JR J S,HERRMANN H J,Andrade R F S,et al.Apollonian networks:Simultaneously scale-free,small world,Euclidean,space filling,and with matching graphs[J].Physical Review Letters,2005,94(1):018702.
- [22]RAVASZ E,BARAASI A L.Hierarchical organization in complex networks[J].Physical Review E,2003,67(2):026112.
- [23]FRONCZAK A,FRONCZAK P,HOLYST J A.Mean-field theory for clustering coefficients in Barabási-Albert networks[J].Physical Review E,2003,68(4):046126.
- [24]WANG X F,CHEN G.Synchronization in small-world dynamical networks[J].International Journal of Bifurcation and Chaos,2002,12(01):187-192.
- [25]WANG X F,CHEN G.Synchronization in scale-free dynamical networks:robustness and fragility[J].IEEE Transactions on Circuits and Systems I:Fundamental Theory and Applications,2002,49(1):54-62.
- [26]LI X,CHEN G.Synchronization and desynchronization of complex dynamical networks:an engineering viewpoint[J].IEEE Transactions on Circuits and Systems I:Fundamental Theory and Applications,2003,50(11):1381-1390.
- [27]WU C W,CHUA L O.Synchronization in an array of linearly coupled dynamical systems[J].IEEE Transactions on Circuits and Systems I:Fundamental Theory and Applications,1995,42(8):430-447.