单调关联系统休止时间的随机性质On the conditional inactivity time of coherent system
贾彬霞,张正成
Jia Binxia,Zhang Zhengcheng
摘要(Abstract):
Signature是研究单调关联系统时要用到一个有用的工具.基于元件寿命的顺序统计量的条件休止时间,建立了由n个独立同分布元件构成的单调关联系统的条件休止时间的混合表达式.建立在该混合表达式上,对具有不同元件或结构的两个系统的条件休止时间进行了随机比较.
The concept of "signature" is a useful tool to study the reliability properties of a coherent system.A mixture representation of the reliability function of conditional inactivity time of coherent system with nindependent and identically distributed components was built in terms of the reliability functions of conditional inactivity times of order statistics.Based on the mixture representations,and then we carry out stochastic comparisons between the conditional inactivity time of two coherent systems with different structures or different component lifetimes.
关键词(KeyWords):
signature;单调关联系统;休止时间;次序统计量;随机序
signature;coherent system;inactivity time;order statistics;stochastic order
基金项目(Foundation): 国家自然科学基金(11161028;71361020)
作者(Author):
贾彬霞,张正成
Jia Binxia,Zhang Zhengcheng
DOI: 10.16366/j.cnki.1000-2367.2018.03.004
参考文献(References):
- [1]Samaniego F J,Balakrishnan N,Navarro J.Dynamic signatures and their use in comparing the reliability of new and used systems[J].Naval Research Logistics,2009,56(6):577-591.
- [2]Navarro J,Shaked M.Hazard rate ordering of order statistics and systems[J].Journal of Applied Probability,2006,43(2):391-408.
- [3]Mahmoudi M,Asadi M.The dynamic Signature of coherent systems[J].IEEE Transactions on Reliability,2011,60(4):817-822.
- [4]田洪迅,王宏刚,万涛,等.基于BP神经网络的配电网可靠性关联因素灵敏度计算方法[J].电力系统保护与控制,2017,45(19):71-77.
- [5]赵国峰,宋希杰,成立.基于关联分析和系统聚类的滩涂围垦适宜性评价[J].灌溉排水学报,2016,35(6):93-97.
- [6]Dasilva A M L,Guimaraes A C R,Nascimento L C.Distribution reliability:Data calibration based on Monte Carlo simulation and evolutionary optimization[C]//International Conference on Probabilistic Methods Applied to Power Systems(PMAMS).[出版地不详]:[出版者不详],2014:1-6.
- [7]Goliforushani S,Asadi M.Stochastic ordering among inactivity times of coherent systems[J].Sankhya B,2011,73(2):241-262.
- [8]Goliforushani S,Balakrishnan N.On the residual and inactivity times of the components of used coherent systems[J].Journal of Applied Probability,2012,49(2):385-404.
- [9]Navarro J,Balakrishnan N,Samaniego F J.Mixture representations of residual lifetimes of used systems[J].Journal of Applied Probability,2008,45(4):1097-1112.
- [10]Zhang Z.Mixture representations of inactivity times of conditional coherent systems and their applications[J].Journal of Applied Probability,2010,47(3):876-885.
- [11]Zhang Z.Ordering conditional general coherent system with exchangeable components[J].Journal of Statistical Planning and Inference,2010,140(2):454-460.
- [12]Zhang Z,Li X.Some new results on stochastic orders and aging properties of coherent systems[J].IEEE Transactions on Reliability,2010,59(4):718-724.
- [13]Zhang Z,Meeker Q.Mixture representations of reliability in coherent systems and preservation results under double monitoring[J].Communications in Statistics-Theory and Methods,2013,42(3):385-397.
- [14]Shaked M,Shanthikumar J G.Stochastic orders[M].New York:Springer-Verlag,2007.
- [15]Zhang Z,Yang Y.Ordered properties of the residual lifetime and inactivity time of n-k+1-out-of-nsystems under double monitoring[J].Statistics and Probability Letters,2010,80(7):711-717.
- [16]Goliforushani S,Asadi M.On the residual and inactivity times of the components of used coherent system[J].Journal of Applied Probability,2012,49(2):385-404.
- [17]Block H,Savits T,Sigh H.The reversed hazard rate function[J].Probability in the Engineering and Informational Sciences,1998,12(1):69-90.
- [18]Tavangar M.Conditional inactivity time of components in a coherent operating system[J].IEEE Transactions on Reliability,2016,65(1):359-369.