一类带p(t)-Laplacian算子的分数阶微分方程边值问题解的存在性Existence of solutions of boundary value problems for a class of fractional differential equations with p(t)-Laplacian
张迪,刘文斌,张伟
Zhang Di,Liu Wenbin,Zhang Wei
摘要(Abstract):
研究了一类带p(t)-Laplacian算子的分数阶微分方程边值问题,利用Schaefer不动点定理得到了解的存在性,并举例验证其主要结论.p-Laplacian算子是p(t)-Laplacian算子的特殊形式,所得结果推广和丰富了已有结果.
In this paper,by usingschaefer fixed point theorem,we present an existence result for the solution of fractional differential equations with p(t)-Laplacian operator.An example is given to illustrate the research result.p-Laplacian operator is a special form of the p(t)-Laplacian operator,our paper generalizes and enriches the existing results.
关键词(KeyWords):
分数阶微分方程;边值问题;p(t)-Laplacian算子;Schaefer不动点定理
fractional differential equation;boundary value problem;p(t)-Laplacian operator;Schaefer fixed point theorem
基金项目(Foundation): 国家自然科学基金(11271364)
作者(Author):
张迪,刘文斌,张伟
Zhang Di,Liu Wenbin,Zhang Wei
DOI: 10.16366/j.cnki.1000-2367.2018.02.003
参考文献(References):
- [1]Ahmad B,Nieto J J.Existence of solutions for anti-periodic boundary value problems involving fractional differential equations via LeraySchauder degree theory[J].Topol Methods Nonlinear Anal,2010,35:295-304.
- [2]Hu Z G,Liu W B,Rui W J.Periodic boundary value problem for the fractional differential equation[J].Internat J Math,2012,23:1-11.
- [3]Agarwal R P,Ahmad B.Existence theory for anti-periodic boundary value problem of fractional differential equations and inclusions[J].Comput Math Appl,2011,62:1200-1214.
- [4]El-Shahed M,Cabada A,Liz E,et al.Positive solutions for boundary value problems of nonlinear fractional differential equations[J].International Conference on Mathematical Models in Engineering,2009,1124(1):101-108.
- [5]Zhang W,Liu W B,Chen T Y.Solvability for a fractional p-Laplacian multipoint boundary value problem at resonance on infinite interval[J].Adv Difference Equ,2016,2016(1):1-14.
- [6]Chen T Y,Liu W B.An anti-periodic boundary value problem for the fractional differential equation with a p-laplacian operator[J].Appl Math Lett,2012,25:1671-1675.
- [7]Du Z J,Lin X J,Tisedell C C.A multiplicity result for p-Laplacian boundary value problems via critical points theorem[J].Appl Math Comput,2008,205:231-237.
- [8]Chai G Q.Positive solutions for boundary value problem of fractional differential equation with p-Laplacian operator[J].Bound Value Probl,2014,2012(1):18.
- [9]唐敏,刘文斌,吕秋燕,等.一类带p-Laplacian算子的分数阶微分方程边值问题解的存在性[J].河南师范大学学报(自然科学版),2014,42(3):5-10.
- [10]ChenY M,LEVINE S,RAO M.Variable exponent linear growth functional in image restoration[J].SIAM J Appl Math,2006,66:1383-1406.
- [11]Szymanek E.The application of fractional order differential calculus for the description of temperature profiles in a granular layer[J].Springer Inter Publ,2013,257:243-248.
- [12]Ruzicka M.Electrorheological Fluids:Modeling and Mathematical Theory[M].Berlin:Springer-Verlag,2000.
- [13]Fan X L,Zhang Q H,Zhao D.Eigenvalues of p(x)-Laplacian Dirichlet problem[J].J Math Anal Appl,2005,302:306-317.
- [14]Zhang Q H,Wang Y,Qiu Z M.Existence of solutions and boundary asymptotic behavior of p(r)-Laplacian equation multi-point boundary value problems[J].Nonlinear Analysis,2010,72:2950-2973.
- [15]Shen T F,Liu W B,Zhao R.Fractional boundary value problemswith p(t)-Laplacian operator[J].Adv Difference Equ,2016,2016(1):118.
- [16]Shen T F,Liu W B.Existence of solutions for fractional integral boundary value problems with p(t)-Laplacian operator[J].J Non Sci Appl,2016,9:5000-5010.
- [17]Podlubny I.Fractional differential equations[M].SanDiego:Acad Press,1999.
- [18]Smart D R.Fixed Point Theorems[M].Cambridge:Cambridge University Press,1980.