类别近似质量约束下的属性约简方法研究Attribute reduction constrained by class-specific approximate quality
李智远,杨习贝,陈向坚,王平心
Li Zhiyuan,Yang Xibei,Chen Xiangjian,Wang Pingxin
摘要(Abstract):
利用近似质量作为度量标准,借助启发式算法求解约简,其本质是根据近似质量的变化情况来找出冗余属性,但这一方法其并未考虑每一个决策类别所对应的下近似集合在约简前后的变化程度.鉴于此,提出了一种基于类别近似质量的属性约简策略,其目标是使得每一个类别的近似质量都满足约简的约束条件.借助邻域粗糙集模型,在UCI数据集上将传统约简策略与类别近似质量约简策略进行了对比分析,实验结果不仅验证了类别近似质量约简策略的有效性,而且表明这种策略依然能够满足传统约简的约束条件.
Based on the measurement of approximate quality,the traditional heuristic algorithm for computing reduction is designed to the find redundant attributes through considering the variation of approximate quality.However,such an approach does not take the variation of lower approximation of each decision class with reduction into account.To fill such a gap,a class-specific approximate-quality-based reduction is proposed.The objective of this strategy is to make the approximate quality of each decision class be acceptable in terms of the constraint of attribute reduction.By using the neighborhood rough set,traditional attribute reduction and class-specific approximate quality based strategies are compared over several UCI data sets.The experimental results tell us that not only the class-specific approximate quality based strategy is effective,but also it satisfies the constraint of traditional attribute reduction.
关键词(KeyWords):
属性约简;类别近似质量;启发式算法;粗糙集
attribute reduction;class-specific approximate quality;heuristic algorithm;rough set
基金项目(Foundation): 国家自然科学基金(61572242;61502211;61503160);; 中国博士后科学基金(2014M550293);; 江苏省青蓝工程人才项目
作者(Author):
李智远,杨习贝,陈向坚,王平心
Li Zhiyuan,Yang Xibei,Chen Xiangjian,Wang Pingxin
DOI: 10.16366/j.cnki.1000-2367.2018.03.019
参考文献(References):
- [1]Pawlak Z.Rough sets[J].International Journal of Computer and Information Sciences,1982,11(5):341-356.
- [2]胡清华,于达仁,谢宗霞.基于邻域粒化和粗糙逼近的数值属性约简[J].软件学报,2008,19(3):640-649.
- [3]Xu S P,Yang X B,Tsang Eric C C,et al.Neighborhood Collaborative Classifiers[C]//International Conference on Machine Learning and Cybernetics.South Korea:IEEE,2016:470-476.
- [4]Yang X B,Chen Z H,Dou H L,et al.Neighborhood System Based Rough Set:Models and Attribute Reductions[J].International Journal of Uncertainty,Fuzziness and Knowledge-Based Systems,2012,20(3):399-419.
- [5]Zhao H,Wang P,Hu Q H.Cost-sensitive Feature Selection Based on Adaptive Neighborhood Granularity with Multi-level Confidence[J].Information Sciences,2016,366:134-149.
- [6]Wang C Z,Shao M W,He Q,et al.Feature Subset Selection Based on Fuzzy Neighborhood Rough Sets[J].Knowledge-Based Systems,2016,111:173-179.
- [7]An S,Shi H,Hu Q H,et al.Fuzzy Rough Regression with Application to Wind Speed Prediction[J].Information Sciences,2014,282:388-400.
- [8]程晓荣,张兰,岳娇.基于粗糙集属性约简的评估模型在电力通信网风险评估中的应用及实现[J].电力系统保护与控制,2016,44(8):44-48.
- [9]王思华,杨桐,段启凡,等.基于DT法和粗糙集理论的接地网安全性状态评定[J].电力系统保护与控制,2017,45(2):48-54.
- [10]Song J J,Tsang Eric C C,Chen D G,et al.Minimal Decision Cost Reduct in Fuzzy Decision-theoretic Rough Set Model[J].KnowledgeBased Systems,2017,124:104-112.
- [11]朱鹏飞,胡清华,于达仁.基于随机化属性选择和邻域覆盖约简的集成学习[J].电子学报,2012,40(2):273-279.
- [12]Ju H R,Li H X,Yang X B,et al.Cost-sensitive Rough Set:A Multi-granulation Approach[J].Knowledge-Based Systems,2017,123:137-153.
- [13]Yao Y Y,Zhang X Y.Class-specific Attribute Reducts in Rough Set Theory[J].Information Sciences,2017,418/419:601-618.
- [14]李智远,杨习贝,徐苏平,等.邻域决策一致性的属性约简方法研究[J].河南师范大学学报(自然科学版),2017,45(5):68-73.
- [15]杨习贝,颜旭,徐苏平,等.基于样本选择的启发式属性约简方法研究[J].计算机科学,2016,43(1):40-43.
- [16]Xu S P,Yang X B,Yu H L,et al.Multi-label Learning with Label-specific Feature Reduction[J].Knowledge-Based Systems,2016,104:52-61.
- [17]魏巍,魏琪,王锋.粗糙集的不确定性度量比较研究[J].南京大学学报(自然科学版),2015,51(4):714-722.
- [18]Mi J S,Wu W Z,Zhang W X.Approaches to Knowledge Reduction Based on Variable Precision Rough Set Model[J].Information Sciences,2004,159(3-4):255-272.
- [19]Zhang X,Mei C L,Chen D G,et al.Feature Selection in Mixed Data:A Method Using a Novel Fuzzy Rough Set-based Information Entropy[J].Pattern Recognition,2016,56(1):1-15.
- [20]王宇,杨志荣,杨习贝.决策粗糙集属性约简:一种局部视角方法[J].南京理工大学学报(自然科学版),2016,40(4):444-449.
- [21]Chen D G,Zhao S Y.Local Reduction of Decision System with Fuzzy Rough Sets[J].Fuzzy Sets and Systems,2010,161(13):1871-1883.